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Abstract— Manual inspection of high-voltage transmission
lines is a hazardous and labor-intensive task, yet it is crucial
for preventing power outages and maintaining grid stability.
Components such as insulator caps and guy adjusters are vital
for structural integrity but are often overlooked in traditional
defect detection frameworks. If these components fail, insu-
lators can detach, leading to blackouts and significant safety
risks. This paper presents an automated predictive maintenance
solution utilizing the YOLOv3 object detection architecture
to identify faults in these specific components. By leveraging
computer vision, we eliminate the need for dangerous manual
climbing and visual inspection. Through our model, we detect
various faultsincluding rust and critical damageallowing for
early health assessment of the grid infrastructure. Our proposed
model operates without human intervention, offering a viable
industrial solution to enhance the efficiency and safety of
electricity transmission.

I. INTRODUCTION

Governments worldwide are emphasizing the expansion
of renewable energy sources to achieve net-zero targets by
2050. Countries are implementing measures to shift energy
production from non-renewable sources, such as coal and
natural gas, to renewables like solar farms, wind farms, and
microgrids. However, transitioning to renewable production
is insufficient; we must also enhance the efficiency and
reliability of energy transmission.

Before transmission, step-up transformers increase elec-
tricity voltage to enhance efficiency. High voltage lowers the
current, resulting in reduced resistance and energy loss. This
electricity travels through aluminum or copper wires sup-
ported by electric towers. To prevent electricity from ground-
ing through the steel towers, the system uses insulators made
of glass, porcelain, or composite polymers. These insulators
are fragile; therefore, an insulator cap (Fig. 1) protects them
from impact damage. Another crucial component is the guy
adjustor (Fig. 2), also known as a U-bolt, which secures the
insulators to the electric towers.

Insulator caps and guy adjustors play a vital role in elec-
tricity transmission. If either component breaks, the insulator
may fall, leading to earthing, power loss, and potential
blackouts across cities or states. Furthermore, component
failure poses a risk of serious injury and accidents.

Consequently, regular inspection is crucial. Currently, line-
men perform this task, facing numerous challenges. The
Bureau of Labor Statistics (BLS) classifies line installers and
repairers as having one of the most hazardous occupations.
In the United States, there are approximately 242,000 such
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Fig. 1: Insulator Cap Fig. 2: Guy Adjustor

positions, with a job growth rate of around 4%. Given the
inherent hazards and the difficulty of manual health checks,
there is a pressing need for predictive maintenance utilizing
AI technology.

In this paper, we employ artificial intelligence and com-
puter vision for the predictive maintenance of these objects.
This allows us to assess component health in advance,
enabling proactive repairs and preventing accidents. Our
approach removes the need for human intervention in the
prediction process.

In addition to detecting structural damage, we forecast the
presence of rust. Rust directly impacts component integrity;
as these parts undergo constant stress, rust weakens them,
reducing their load-bearing capacity and leading to failure.
The insulator cap is particularly prone to rust because it
attaches to insulators via a ball-and-socket joint where water
often accumulates due to lack of protection from rain.

We propose a novel method using AI and Machine
Learning (ML) to determine which components are intact,
damaged, or rusted. Our automated model streamlines the
process, ensuring efficient maintenance and the safety of
transmission towers.

II. LITERATURE REVIEW

Limited literature discusses the health of guy adjustors
or insulator caps specifically; however, several studies focus
on transmission line failures. Peixoto et al. [8] concluded
that the failure rate of HVDC transmission line caps is
significantly higher than in AC applications. Despite exten-
sive research, the specific causes remain debated. Neverthe-
less, researchers observe that porcelain and glass insulators
demonstrate a high failure rate under high DC stress. In-
creased pollution also contributes to failure rates.

Insulators are outdoor devices subjected to rigorous stress.
Studies indicate that several years post-manufacturing, the
load test threshold for failure increases by 14.7%, and life
expectancy depends on the percentage of SiO2, Fe2O3, and
Al2O3 [11]. Strain rate significantly affects transmission tow-
ers, increasing maximum base shear forces and decreasing



maximum top displacements; consequently, seismic analysis
must account for strain rate [15]. While conventional meth-
ods can detect corrosion, modern techniques using computer
vision and machine learning significantly enhance detection,
improving cost-effectiveness and reliability [5].

Alahyari et al. [1] used CNNs to detect defects such as
broken insulators or missing/burned insulator caps. We ex-
tend this approach by including guy adjustors and increasing
the number of defect classes. Failures can also result from
severe weather, such as wind and lightning [4]. Mili et al.
[6] discuss the risks of power system failures, noting that
current practices often neglect protection systems. While
catastrophic failures cannot be entirely prevented, newer
developments in power and computer engineering can reduce
their frequency and impact [2].

Regarding detection algorithms, varying CNN-based mod-
els like Faster R-CNN, R-CNN, and YOLO are reviewed in
[7]. We found YOLO to work best for our application due
to its speed and ability to detect small objects like insulator
caps [9] [12].

III. METHODOLOGY

A. Image Classification using CNN

As noted in [3], Convolutional Neural Networks (CNNs)
offer high spatial feature extraction capacity and low pro-
cessing costs. CNNs consist of multiple layers utilizing
convolution kernels. While no perfect topology exists, the
Inception network [14] yields robust results.

In a CNN, a kernel (filter) passes across the image,
modifying it based on the filter’s values. The feature map
values are determined using the input picture f and the kernel
h:

G[m,n] = (f × h)[m,n] =
∑
j

∑
i

h[j, k]f [m− j, n− k]

(1)
Since image size decreases with each layer, we add a

border (padding) to increase the impact of edge pixels.
Padding p is calculated using the filter dimension f :

P = (f − 1)/2 (2)

Stride length determines the step size of the kernel. The
output matrix size is calculated as follows, where s denotes
the stride:

nout = floor
(
1 +

n+ 2p− f

s

)
(3)

When applying multiple filters, the convolution occurs
independently, and results are stacked. The dimension of the
received tensor is given by:

[n, n, nc]× [f, f, nc] =[
floor

(
1 +

n+ 2p− f

s

)
, floor

(
1 +

n+ 2p− f

s

)
, nf

]
(4)

During forward propagation, we calculate the intermediate
value Z by convolving the input data from the previous layer
with the weight tensor W and adding bias b. A non-linear
activation function g is then applied:

Z [l] = W [l] ·A[l−1] + b[l], A[l] = g[l](Z [l]) (5)

Derivatives during backpropagation are calculated as:

dA[l] =
∂L
∂A[l]

, dZ [l] =
∂L
∂Z [l]

, dW [l] =
∂L

∂W [l]
, db[l] =

∂L
∂b[l]

(6)
While architectures like ResNet or Inception work well

for single objects, they may struggle with multiple objects
in complex environments [13]. Therefore, we utilize object
detection models.

B. Object Detection using CNN

Object localization involves drawing a bounding box
around an item, while object detection combines localization
with classification. We update the output labels to teach the
model both the object’s class and its position.

The output layer includes four additional values: the
object’s centroid location and the bounding box’s width and
height proportions. To detect multiple objects, we effectively
crop the image into numerous sections and run the CNN on
each. The YOLO algorithm optimizes this by using a grid
approach to predict bounding boxes and classes simultane-
ously.

C. YOLOv3

The YOLOv3 architecture consists of 53 convolutional
layers trained on ImageNet, with 53 additional detection
layers, totaling 106 layers. It uses detection kernels on feature
maps of three different sizes. The detection kernel shape is
1× 1× (B× (5+C)), where C is the number of classes, 5
represents the bounding box attributes plus object confidence,
and B is the number of bounding boxes a cell can predict.
In YOLOv3, B = 3 and C = 80, resulting in a kernel size
of 1× 1× 255.

Detections occur at the 82nd, 94th, and 106th layers to
handle different scales. The network down-samples the image
until the 81st layer (stride 32). The feature map from layer
79 is upsampled and concatenated with the feature map from
layer 61 for the second detection. Similarly, the feature map
from layer 91 is concatenated with layer 36 for the final
detection. This multi-scale detection addresses the difficulty
of recognizing small objects, a limitation of YOLOv2. Figure
3 illustrates the complete architecture.

IV. RESULTS

This section summarizes the results from our model. We
detect two objects: the Guy Adjustor and the Insulator Cap.
For each, we classify whether they are intact or critically
damaged, and whether they are rusted or non-rusted.

Our model includes eight classes:



Fig. 3: The YOLOv3 Network Architecture.

Fig. 4 Fig. 5

Insulator Cap (CP) Guy Adjustor (GA)
CPCD - Critically

damaged
GACD - Critically

damaged
CPIN - Intact GAIN - Intact

CPNR - Non-Rusted GANR - Non-Rusted
CPR - Rusted GAR - Rusted

The results indicate that certain classes are interrelated.
Specifically, the following pairs are inversely proportional:
1) Intact vs. Rusted, 2) Rusted vs. Non-Rusted, 3) Intact
vs. Critically Damaged, and 4) Non-Rusted vs. Critically
Damaged.

Figure 4 shows that the Guy Adjustor has a high probabil-
ity of being intact (INSP-GAIN: 94%) and a correspondingly
low probability of being rusted (INSP-GAR: 79%).

We observed that the ”Intact” class is directly proportional
to ”Non-Rusted.” This is evident in Figure 5, where the
insulator cap has a high probability of being intact (INSP-
CPIN: 100%) and a high probability of being Non-Rusted
(INSP-CPNR: 99%). These interdependencies validate the
correctness of our model. As noted by Saha et al. [10], severe
rusting compromises component health, leading to reduced
strength and deformation.

Object detection in complex environments is challenging
due to background clutter and occlusion [14]. Our dataset
contains towers surrounded by trees and buildings (Fig 6).
Despite this, our model predicts with high accuracy. We
accounted for varied angles and lighting conditions by using
data augmentation and collecting images at different times
of the day.

Figure 7 shows the training loss approaching zero within
the first 250 epochs. However, further training was necessary
to minimize the loss function. Figure 8 (500 to 2700 epochs)

Fig. 6
Figures 4, 5, and 6 demonstrate how our algorithm

outperforms challenges. It identifies components and
isolates critical faults in complex backgrounds with varying

lighting conditions.

Fig. 7: Loss Graph Fig. 8: Zoomed Loss Graph

shows the loss graph damping, indicating convergence.
Figure 9 confirms that accuracy fluctuates between 99%

and 99.4% from 2000 to 2700 epochs. This high confidence
allowed us to use the trained weights on the isolated test
dataset. Our model achieved a final average accuracy of
99.2%.

Figure 10 plots the standard deviation of each predicted
class. Error bars help visualize real-world accuracy fluctua-
tions. For example, CPIN accuracy is observed at 85% but
can fluctuate between 70% and 100%.

In Figure 11, we removed false positives by eliminating
predictions with less than 50% confidence. This increased
accuracy and reduced the error range, improving the worst-
case accuracy from 70% to 80%.

We conclude that our model is sufficiently trained for the
8 classes, providing an average accuracy of 85%, reaching as
high as 95% in some cases. Lower accuracy in some classes
is attributed to the limited size of the training dataset.

V. FUTURE WORK

This paper proposed an AI/ML and computer vision-based
method to determine the integrity and rust status of insulator
caps and guy adjustors. The goal is to establish an industrial
standard that eliminates human intervention for identifying
faults. While the model achieves good accuracy, future work
will focus on classifying specific corrosion types to enable
targeted rectification. Expanding the dataset will improve
class-specific accuracy, and applying post-processing image
techniques may further enhance results.



Fig. 9: Model Accuracy

Fig. 10: Standard Deviation Fig. 11: Standard Deviation
without false positives
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